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Abstract—This paper characterizes the performance of IA
technique taking into account the dynamic traffic pattern and
the probing/feedback cost. We consider a TDD system where
transmitters acquire their CSI (Channel State Information) by
decoding the pilot sequences sent by the receivers. Since global
CSI knowledge is required for IA, the transmitters have also
to exchange their estimated CSIs over a backhaul of limited
capacity. Under this setting, we characterize in this paper the
stability region of the system and provide a probing algorithm
that achieves the max stability region. In addition, we compare
the stability region of IA to the one achieved by a TDMA
system where each transmitter applies a simple ZF (Zero Forcing
technique).

I. INTRODUCTION

One of the key issue in wireless communication systems is
the interference which is caused by a large number of users
communicating on the same channel. Interference alignment
(IA) is introduced in [1] as one of the most efficient interfer-
ence management techniques. It is based on the concept of
aligning the interferences in a reduced dimensional subspace,
so that the desired signal can be transmitted with less inter-
ference in a larger subspace. One disadvantage of IA is that
it requires global channel state information (CSI) at each of
the transmitting nodes, which is difficult to obtain in practical
systems. Therefore, IA under limited feedback was studied
and several quantization schemes were proposed, in order to
aid the transmitters to acquire CSI knowledge from receivers
and then to share it between each other [2]–[6].

Another important factor to consider is the CSI acquisition
(probing) cost. We consider a system under Time-Division
Duplex (TDD) mode where users send training sequences in
the uplink so that the transmitters can estimate their channels.
This scheme uses orthogonal sequences among the users, so
their lengths are proportional to the number of active users in
the system. It means that after acquiring the CSI of L users,
the throughput is multiplied by 1−Lθ, where θ is the fraction
of time that takes the CSI acquisition of one user [7].

From the above, it can be seen that the more L is large,
the more the acquisition process consumes a larger fraction
of time and hence leaves a smaller fraction for transmission.
Thus, it is important to focus on the tradeoff between having
a large number of active transmitter-receiver pairs (which
means a high probing cost but many pairs can communicate
simultaneously) and having small L (a small probing cost but
few pairs can communicate simultaneously) [8]. In the end,

the system should determine what pairs to schedule at each
time slot. To provide an answer to this question, one major
way is to use opportunistic scheduling. It is based on the
principle of scheduling users based on their channel states and
queue lengths, which can ensure the stability of the system.
Many scheduling strategies were proposed under various traffic
and network scenarios. In [9], the authors have proposed the
max-weight scheduling policy and have shown its optimality.
Scheduling with limited CSI information have been analyzed
in [7]. Furthermore, the impact of delay on the stability has
been analyzed under zero forcing SDMA and limited feedback
case [10]. Finally, probing cost and scheduling were jointly
investigated in [8].

The context here is different from the aformentioned work.
We consider a network where multiple transmitter-receiver
pairs operate in TDD mode and apply the IA technique
under backhaul links of limited capacity. The CSIs are then
obtained by decoding the pilots sent by the receivers and
then the transmitters exchange their estimated CSIs over the
backhaul. A major contribution of this work is the precise
characterization of the stability region of the system under all
the considerations mentioned before. Furthermore, we provide
an algorithm that selects the users that must send their pilots
in each time slot (i.e. it schedules the active pairs). Another
main contribution is the comparison between IA and TDMA-
ZF (zero forcing) techniques in terms of stability regions.

The rest of this paper is organized as follows. The system
model is presented in Section II. In Section III, the stability of
the system is analyzed and the comparison between IA and ZF
is provided. Section IV is dedicated to numerical results and
relevant discussions. Finally, Section V concludes the paper.

Notation: Boldface uppercase symbols (i.e., A) represent
matrices whereas lowercases (i.e., a) are used for vectors. a∗

denotes the conjugate transpose of a. The symbol I denotes
square identity matrix. ⊗ is the Kronecker product. |.| indicates
the absolute value, ||.||1 and ||.|| are used for the norm of first
and second degree, respectively.

II. SYSTEM MODEL

We consider the MIMO interference channel with N
transmitter-receiver pairs shown in Fig. 1. For simplicity of
exposition, we consider a network where all transmitters and
all receivers (users) are equipped with Nt and Nr antennas,
respectively. Each transmitter communicates with its intended
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Figure 1: MIMO interference network with limited backhaul.

user via d ≤ min(Nt, Nr) independent data streams, and
interferes with all other unintended users. We assume that
time is slotted. As we will see later on, only a subset L(t)
(of cardinality L(t)) of pairs are active at each time slot,
with L(t) ≤ N . For notational convenience we will drop the
notation for dependence on t and L.

Given this channel model, the received signal at active user
k can be expressed as
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where yk is the Nr×1 received signal vector, zk is the additive
white Gaussian noise with zero mean and covariance matrix
σ2INr , Hki is the Nr×Nt channel matrix between transmitter
i and receiver k with independent and identically distributed
(i.i.d.) zero mean and unit variance complex Gaussian entries,
P is the total power at each transmitting node, which is equally
allocated among its data streams, xji represents the j-th data
stream from transmitter i, and vji is the corresponding Nt× 1
precoding vector of unit norm. Let α = P

d .

A. Interference Alignment Technique

For tractability, we restrict ourselves to a per-stream zero-
forcing receiver. In such a system, receiver k uses the Nr × 1
combiner vector umk of unit norm to detect its m-th stream,
which gives
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In order to mitigate the interferences in (2), we can design the
set of combiner and precoder vectors such that

(umk )
∗
Hkiv

j
i = 0, ∀(k,m) 6= (i, j). (3)

Note that the above conditions are those of a perfect in-
terference alignment. In other words, suppose that all the
transmitting nodes have perfect global CSI and each receiver
obtains a perfect version of its corresponding combiner vector,
ISI and IUI can be suppressed completely. However, obtaining
the perfect global CSI at the transmitters is not always practical
due to the fact that backhaul links, which connect transmitters
to each other, are of limited capacity. The condition on the
feasibility of IA is given by the following remark.

Remark 1. To ensure the feasibility of the interference align-
ment problem, we have to respect the condition (given in [11])
Nt + Nr ≥ d(L + 1). Without loss of generality, we assume
that the maximal number N of pairs satisfies this condition.

In the following, the CSI sharing mechanism is detailed.

B. CSIT Sharing Over Limited Capacity Backhaul Links

We use a TDD transmission strategy which enables the
transmitters to estimate their channels toward different re-
ceivers by exploiting the reciprocity of the wireless channel,
meaning that the i-th transmitter estimates the channels Hki,
for k = 1, ..., L, k 6= i. This set of estimated channels is
denoted by local CSI of transmitter i. We assume that each
transmitter estimates perfectly its local CSI. But, as mentioned
earlier, global CSI is required at each transmitting node in
order to design IA vectors. For this purpose, active transmitting
nodes need to share their local knowledge between each other,
and this can be done via backhaul links which are, practically,
of limited capacity.

We consider the topology of CSI sharing shown in Fig. 1,
where all the transmitters are connected to a central scheduler
via backhaul links of finite capacity, which serves as a way
for connecting transmitters to each other. Since backhaul
links are of limited capacity, codebook-based quantization is
an effective way to reduce the huge amount of information
exchange needed for CSI sharing. In detail, let hki denote
the vectorization of the channel matrix Hki, then transmitter i
selects an optimal codeword from a predetermined codebook
CB =

{
ĥ1
ki, ..., ĥ

2B

ki

}
of size 2B according to the following:

no = arg max1≤n≤2B

∣∣∣h̃∗kiĥnki∣∣∣2 , where h̃ki = hki/ ‖hki‖ is
the channel direction vector and B is the number of bits.
After that transmitter i quantizes all the matrices of its local
CSI by computing their corresponding optimal indexes, it
sends these indexes to all other active transmitters which share
the same codebook, allowing these transmitters to reconstruct
the quantized local CSI of transmitter i.

To define the error eki resulting from each quantization
process, we adopt the same model as in [2], [10]. Based on

this, eki can be defined as eki = 1 −
(∣∣∣ĥ∗kihki∣∣∣2 / ‖hki‖2),

and its corresponding cumulative distribution function (CDF)
is given by: Pr(eki ≤ ε) = 2BεQ, 0 ≤ ε ≤ 2−

B
Q , where

Q = NtNr − 1.

C. Rate model

As explained in the previous section, each transmitter de-
signs its IA vectors based on a perfect version of its local
CSI and an imperfect (quantized) version of local CSI of



other transmitters. For this reason, the IA technique is able
to completely cancel the ISI, but not the IUI. Thus, under
such observation and using the results in [12], the SINR for
stream m at receiver k can be written as

γmk =
α
∣∣(ûmk )

∗
Hkkv̂

m
k

∣∣2
σ2 + α

L∑
i=1
i 6=k

‖hki‖2 eki
d∑
j=1

∣∣∣(wki)∗T
m,j
k,i

∣∣∣2 , (4)

where wki is a unit norm vector isotropically distributed in
the null space of ĥki, T

m,j
k,i = v̂ji ⊗ (ûmk )∗, v̂mk and ûmk are

the combining and precoding vectors, respectively, designed
based on the available global CSI at transmitter k.

As alluded earlier, only a subset L (with |L| = L ) of users
is scheduled at a time. Note that under the considered system
model, it can be easily noticed that the rate of an active user
depends only on the cardinality L of L and not the subset L
itself. We now explain some useful points which are adopted
in the rate model.
For a fixed modulation and coding scheme and with interfer-
ence treated as noise, a well accepted model for transmissions
is that they succeed if the SINR exceeds a certain threshold
τ . Thus, the average rate for active user k can be written in
function of the transmission success probability conditioned
on the number of active pairs as RP(γmk ≥ τ | L), where R
is the assigned transmission rate per user [10].
Channel acquisition cost is not negligible and should be
considered. For that, we assume that acquiring the CSI of one
user takes fraction θ of the slot, and then the rate expression
becomes (1− Lθ)RP(γmk ≥ τ | L).

D. Queue Dynamics and Scheduling

For each user, we assume that the incoming data is stored in
a respective queue (buffer) until transmission and we denote by
q(t) = [q1(t), ..., qN (t)] the queue length vector. Let A(t) =
[A1(t), ..., AN (t)] denote the vector of number of bits arriving
in the buffers in time slot t, which is an i.i.d. in time process,
independent across users and with Ak(t) < amax. The mean
arrival rate for receiver k is denoted by ak = E[Ak(t)]. We
designate by B(t) = [B1(t), ..., BN (t)] the vector of number
of bits served at time slot t with Bk(t) < bmax. Note that, for
each user, this number can be given by the minimum between
the corresponding rate and the queue length.

In each slot, the central scheduler selects a subset L (recall
that |L| = L) of users that must send their pilots so that
their corresponding transmitters can estimate the CSIs. Then,
these scheduled transmitter-receiver pairs will be active for
transmission. As we will see later, the scheduling decision
depends on the average rate and the queue lengths of all N
pairs. One can notice that the average rate expression depends
on Lθ which represents the probing cost. Thus, if we select
a large number of pairs L for transmission, many pairs can
communicate (i.e. this will leave a small fraction of time for
transmission) but a high CSI acquisition cost (Lθ) is needed.
On the other hand, a small L requires a low acquisition cost,
but, at the same time, it allows a few number of simultaneous
transmissions. The scheduling policy, i.e. scheduling decision,
can be represented by an indicator vector s ∈ ZN where the
kth component is equal to 1 if the kth queue (pair) is scheduled

and equal to 0 otherwise. We denote S as the set of all possible
vectors s, thus the cardinality of this set is equal to |S| = 2N .

In this work, the focus will be mainly on the stability of the
system. To this end, we give the following definition:

Definition 1. The stability region can be defined as the set
of arrival rate vectors for which all the queues of all users
are strongly stable. The condition for strong stability can be
expressed as

lim sup
T→∞

1

T

T−1∑
t=0

E[qk(t)] <∞,∀k ∈ {1, ..., N}. (5)

Note that a scheduling policy that stabilizes the system for
all this set of arrivals is called throughput optimal. Under a
policy ∆, the queue length dynamics can be given by

q(∆)(t+ 1) = max
{
q(∆)(t) + A(t)−B(∆)(t),0

}
, (6)

where the max operator is component-wise.

III. STABILITY ANALYSIS OF IA
For ease of exposition, we restrict ourselves to the case with

one modulation (see Section II). Essentially, a similar analysis
can be done for the case with multiple modulations, which is
given in Appendix G.

A. Average Transmission Rate

In this subsection, we are interested in deriving the average
rate per user and the total average rate of the system. In
addition, we provide an analysis of the behavior of these rate
functions with the variation of the number of active users.

As explained in the previous section, if L is the subset of
scheduled users, the average transmission rate per active user
is given by (1 − Lθ)RP(γmk ≥ τ | L) since the average rate
depends only on the cardinality L of subset L. Relying on the
recent result in [12] where the transmission success probability
is derived, we have that the average transmission rate for an
active user can be given by

r = Re−
σ2τ
α (1− Lθ)FL−1, (7)

in which F = κ−Q1 2F1(β2, Q;β1 + β2;κ−1
2 ), where 2F1 is

the hypergeometric function, κ1 = (1 + dτ

2
B
Q

), κ2 = (1 + 2
B
Q

dτ ),

β1 = (Q+1)d
Q − 1

Q and β2 = (Q− 1)β1.
Notice that this rate is the same for all the active users for our
system model. Consequently, the total average transmission
rate of the system is given by

rT = Re−
σ2τ
α L(1− Lθ)FL−1. (8)

The variation of these rate functions with L is described by
the following lemma.

Lemma 1. Given a number of users to be scheduled, L, the
average transmission rate is a decreasing function with L,
whereas the total average transmission rate function reaches
its maximum at L1 <

1
2θ , where L1 is given by

L1 =

1
θ −

2
logF −

√(
2

logF −
1
θ

)2

+ 4
θ logF

2
. (9)



Proof. The proof is provided in Appendix A.

Remark 2. One limitation on the optimal number of pairs,
which is satisfied in our case, is that it should be lower than
the factor 1

θ . This comes from the fact that 1− Lθ < 1.

From (9) we can notice that L1 is in general a real value.
Since it represents a number of users, we can find the best
and nearest integer to L1, i.e. best in terms of maximizing the
total average rate function. We denote this integer by Lm and
we assume that N > Lm.

B. Stability Analysis

After presenting results on the average rate function, we now
provide a precise characterization of the stability region of the
adopted system. Before proceeding in the analysis, we define
the subset SL as the following SL = {s : ‖s‖1 = L}, where
s ∈ ZN is the vector whose coordinates take values 0 or 1 (see
Section II). In addition, we denote rL and r(L) as an equiva-
lent representations of the average rate r (since r depends on
L). Let GL a subset defined as GL = {rLs,∀s ∈ SL}. For
these subsets, we define the set R and its complementary set
R̄ as R = {G1, G2, ..., GLm} and R̄ = {GLm+1, ..., GN}.
Notice that |R| + |R̄| = |S|. Under these considerations, we
can state the following lemma which is useful to characterize
the stability region of the system.

Lemma 2. Each point in R̄ is inside the convex hull of R.

Proof. The detailed proof can be found in Appendix B.

Now, we have all the materials to characterize the stability
region of the system, which is given by the following theorem.

Theorem 1. The stability region of the adopted system can
be characterized as

Λc = CH{G1, G2, ..., GLm} = CH{R} , (10)

where CH represents the convex hull.

Proof. The proof is provided in Appendix C.

Unlike classical results in which the stability region is
given by the convex hull over all possible decisions, here the
characterization is more precise and is defined by the decision
subsets SL for all L ≤ Lm. In addition, this theorem provides
an exact specification of the corner points (vertices) of the
stability region (it means that this region is defined by the set
R and not the whole space).

In order to choose the users who will send their pilots, we
use the following scheduling policy

∆∗ : L(t) = arg max
s∈S

{r(‖s‖1) s · q(t)} , (11)

where ‖s‖1 gives the number of ’1’ coordinates in s (or
equivalently, the number of active pairs). Note that these non-
zero coordinates precise what pairs to schedule. One can
remark that unlike the standard max-weight, the policy in our
case depends on the average rate and not the instantaneous one.
For the proposed policy, we have the following proposition.

Proposition 1. The scheduling policy ∆∗ is throughput opti-
mal. In other words, ∆∗ stabilizes the system for every arrival
rate vector a ∈ Λc.

Proof. To prove optimality, we use Foster’s theorem [13]. We
present the proof in Appendix D for completeness.

Notice that implementing ∆∗ for large N is of high
computational complexity (CC). For this, we analyze the CC
of this policy and we propose an algorithm which reduces
considerably this complexity. This is provided in Appendix E.

C. Compare IA to Zero Forcing

In this subsection, we characterize the stability region of
the case when we use zero forcing (ZF) technique with
time division multiple access (TDMA) instead of interference
alignment. After that, we investigate which one of these two
techniques outperforms the other in terms of stability.

In the case where we apply TDMA-ZF technique, there is
only one active pair at a time, so the average rate of this pair
can be given by [10]

rzf = R(1− θ)P(γmk ≥ τ)

= R(1− θ)
(

1− Fχ2
2(Nr−Nt+1)

( τ

snr

))
, (12)

where Fχ2
2(Nr−Nt+1)

is the cumulative density function of
χ2

2(Nr−Nt+1) and snr = α
σ2 . Under the above considerations,

the stability region for TDMA-ZF can be described as follows.

Proposition 2. If we apply TDMA-ZF technique, the stability
region of the corresponding system can be given by

Λzf = CH{J1} , (13)

where J1 = {rzf s,∀s ∈ S1}.

This proposition results from the fact that only one pair is
active at a time, thus only subset S1 is considered since it
contains all the possible combinations of choosing one pair.

To compare the performance of IA and TDMA-ZF tech-
niques, we adopt the following reasoning: we investigate if
there exists an L (with L ≤ Lm) such that the stability
region for IA (defined in Theorem 1) surpasses, even partially,
the stability region for TDMA-ZF given in the previous
proposition. This leads to the following theorem:

Theorem 2. In terms of stability, interference alignment can
outperform TDMA zero forcing if there exists a number L (with
1 ≤ L ≤ Lm) such that LrL > rzf. If this condition is not
satisfied, then it is better to use TDMA zero forcing technique.

Proof. Please refer to Appendix F for the proof.

This theorem provides a kind of rule which allows the
system deciding if the transmission should be done with
TDMA-ZF or IA technique. This decision is made based
on the existence (or not) of a number of pairs L such that
LrL > rzf. Specifically, if the first condition in Theorem 2 is
satisfied, it may be beneficial to use the IA technique since we
have a part of its stability region that surpasses the stability
region of TDMA-ZF (given by Λzf). On the other hand, if
this condition is not satisfied, then the stability region of IA
is entirely inside Λzf, and thus it is better to use TDMA-ZF
technique.



IV. NUMERICAL RESULTS

In this section we present our numerical results. We consider
a system where the number of antennas Nt = Nr = 10,
SNR = P

σ2 = 10 dB, d = 2, θ = 0.01, τ = 1. We take
N = 9 and we assume that all users have Poisson incoming
traffic with the same average arrival rates as ak = a. We set
the slot duration to Ts = 1 ms and we consider a bandwidth
BW = 10 MHz. Therefore, the assigned transmission rate per
(active) user can be given by R = dBW log2(1 + τ) bits/s
= 20 Mbits/s = 20 Kbits/slot. In this section we include the
path loss of the direct and cross links. Even though in practice
all the path loss coefficients are different, we consider in this
section a very special case that can provide more insights on
the comparison between IA and TDMA-ZF. In fact, we want
to show the impact of the cross links on the performance of
these 2 schemes. In order to have more insightful results, we
consider that all the direct links have a path loss coefficient of
1 and all the cross links have a path loss of ζ (with ζ ≤ 1).
This allows us to see, with respect to ζ, when IA performs
better than TDMA-ZF and vice versa.

To show the stability performance of the system, we plot the
total average queue length given by 1

M

∑M−1
t=0

∑N
k=1 qk(t) for

different values of a, where each simulation takes M timeslots.
We set M = 105. Note that the point where the total average
queue length function increases very steeply is the point at
which the system becomes unstable.
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Figure 2: Total average queue length vs. mean arrival rate a. ζ = 0.1.

0 1,000 2,000 3,000 4,000 5,000

0

0.5

1

1.5

·109

Mean Arrival Rate a (bits/slot)

To
ta

l
A

ve
ra

ge
Q

ue
ue

L
en

gt
h

(b
its

) TDMA-ZF
IA, B=20 bits

Figure 3: Total average queue length vs. mean arrival rate a. ζ = 0.3.

Fig. 2 shows that IA gives better performances when we
increase the number of bits. This is due to the fact that the
more the quantization is precise, the more we achieve higher
rates which implies better stability performance.

From Fig. 2 and 3, we can see that TDMA-ZF outperforms
IA when the interference impact is high (for instance ζ = 0.3),
whereas we obtain the converse for less interfering system
(ζ = 0.1). This is due to the fact that when ζ increases
the performance of IA is more sensitive to the number of
quantization bits B. It is worth mentioning that there exist
other parameters that affect this comparison such as, for
example, the number of antennas, the threshold τ , the backhaul
capacity which specifies B and so on. For these comparisons,
one last thing we should mention is that for IA the CSI
sharing process over the backhaul costs L2(L− 1)B bits per
transmission, while no such cost is needed when using TDMA-
ZF technique.

V. CONCLUSION

In this paper, we characterized the stability region for IA
in a general MIMO interference network under TDD mode
with limited backaul capacity and taking into account the
probing cost. We provided an optimal scheduling algorithm
that achieves this region. We compared IA and TDMA-ZF
techniques in terms of stability region and provided a condition
for which TDMA-ZF outperforms IA.
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APPENDIX A
PROOF OF LEMMA 1

We start the proof by first showing that r(L) decreases with
L. The first derivative of this rate function is given by

dr

dL
= Re−

σ2τ
α FL−1(−θ + (1− Lθ) logF ) (14)

Since we have L < 1
θ and logF < 0, the first derivative is

negative and so r decreases with L.
To analyze the variation of rT (L) we need to compute the
first and second derivatives of this function (w.r.t. L), which
help us determine the optimal number of pairs, such as

drT
dL

= Re−
σ2τ
α FL−1

(
1− 2Lθ + (L− L2θ) logF

)
(15)

d2rT
dL2

= Re−
σ2τ
α FL−1×(

−2θ + 2(1− 2Lθ) logF + (L− L2θ)(logF )2
)

(16)

Putting the first and second derivatives equal to zero gives,
respectively,

L2
1

=

1
θ −

2
logF ±

√(
2

logF −
1
θ

)2

+ 4
θ logF

2
(17)

L4
3

=
−4 + logF

θ ±
√(

4− logF
θ

)2

+ 8
θ −

8
logF

2
(18)

Note that logF < 0 and
(

2
logF −

1
θ

)2

+ 4
θ logF = 1

θ2 + 4
(logF )2 .

We now study the results in (17) and (18).
Since 1

θ −
2

logF >
√

1
θ2 + 4

(logF )2 , it results that L2 >√
1
θ2 + 4

(logF )2 > 1
θ , which implies that L2 is to reject due

to the constraint L < 1
θ . Moreover, we have that L1 <

1
2θ −

2
2 logF −

1
2

√
4

(logF )2 = 1
2θ . For the expressions in (18),

we can see that L3 < 0 and that L4 > 0.
Based on the above observations, the variation of rT (L) can be
described as follows: rT (L) increases for L < L1, decreases
between L1 and L2 and then increases for L > L2. For the
sake of brevity, we omit the proof of this part.
Therefore, the total average rate function rT reaches its
maximum at L1.

As mentioned in Section III, L1 is in general a real value,
thus we need to find the best and nearest integer (denoted
by Lm) to L1. To clarify how Lm is selected, we give the
following simple procedure:

1) Calculate L1 using (9).
2) Let L11 = bL1c and L12 = dL1e , i.e. the largest previous

and the smallest following integer of L1, respectively.
3) If rT (L12) ≥ rT (L11), then Lm = L12; otherwise put

Lm = L11.

APPENDIX B
PROOF OF LEMMA 2

We first give and prove the following lemma which will
help us in the proof of Lemma 2.

Lemma 3. Each point (vector) in SL+1 can be written as
L+1
L × some point in the convex hull of SL.

Proof. We start the proof by calculating the number of vectors
in SL that have the same L non-zero (’1’) coordinates as the
vector si,L+1 ∈ SL+1 . This number can be interpreted as
the combination of L+ 1 elements taken L at a time without

repetition, which can be written as
(
L+ 1

L

)
= (L+1)!

L!(L+1−L)! =

L+ 1.
Thus, we have L+1 elements from SL that if we take them in
a specific convex combination, we get a point on the same line
(from the origin) as that of si,L+1. This can be represented by

L+1∑
j=1

δjsj,L ≡ si,L+1, (19)

where ≡ is a notation used to say that these two points are on
the same line,

∑L+1
j=1 δj = 1 and δj > 0.

Let us suppose that all the δj = 1
L+1 , which satisfy the above

constraints. Replacing δj in the term at the left side of (19),
we obtain the following

L+1∑
j=1

δjsj,L =
1

L+ 1

L+1∑
j=1

sj,L =
L

L+ 1
si,L+1, (20)

where the second equality holds since we have L+1 elements
to sum, each of which contains L ’1’ and one ’0’, and this
’0’ changes position with the different elements. The sum
corresponding to each coordinate is then equal to L.
In order to better understand the result, we provide a geometric
interpretation of the above lemma. We take the example given
in the figure below. In this case we have S1 = {(1, 0); (0, 1)}
and S2 = {(1, 1)}. Let P2 = (1, 1) and P1 = ( 1

2 ,
1
2 ). Note that

P2 ∈ S2 and P1 is in the convex hull of S1. We can express
P2 as P2 = 2

1 [ 1
2 (1, 0) + 1

2 (0, 1)] = 2( 1
2 ,

1
2 ) = 2

1P1. Thus, P2

equals 2
1× a specific point (P1) in the convex hull of S1.
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Figure 4: Example that illustrates the result of Lemma 3.

This completes the proof of Lemma 3.



Using Lemma 3, a point si,L+1 in SL+1 can be expressed
in function of L + 1 specific points in SL as si,L+1 =
L+1
L

∑L+1
j=1 δjsj,L, which implies that

rL+1si,L+1 = rL+1
L+ 1

L

L+1∑
j=1

δjsj,L (21)

By Lemma 1, we have (L+ 1)rL+1 < LrL for L ≥ Lm. We
thus get

rL+1
L+ 1

L

L+1∑
j=1

δjsj,L < rL
L

L

L+1∑
j=1

δjsj,L = rL

L+1∑
j=1

δjsj,L

(22)

Note that the inequality operator in (22) can be used since the
two compared points are on the same line (from the origin).
Therefore, each point in RL+1 is inside the convex hull of RL
for L ≥ Lm, since rL+1si,L+1 ∈ RL+1 and rL

∑L+1
j=1 δjsj,L

is in the convex hull of RL. Consequently, all the points in
RL+1 for L ≥ Lm (i.e. these points form R̄) are inside the
convex hull of RLm which is a subset of R.
In the following, we illustrate a geometric representation
of this result for the case where N = 2 and Lm = 1.
For this example, we have R = {(0, 0); (r1, 0); (0, r1)} and
R̄ = {(r2, r2)}. In addition, using Lemma 1 we can write
2r2 < r1. We can easily notice that the set R̄ is inside the
convex hull of R.

(r1, 0)

(0, r1)

(r2, r2)

( r1
2
, r1

2
)

Convex Hull of R

Figure 5: Example that shows the result of Lemma 2.

This completes the proof.

APPENDIX C
PROOF OF THEOREM 1

First we prove that Λc is achievable. Indeed, a point rc in
Λc can be written as the convex combination of all the points
in R as rc =

∑|R|
i=1 piri, where ri represents a point in R and∑|R|

i=1 pi = 1. Note that each point (decision) ri represents a
different scheduled subset of pairs. To achieve rc, it suffices to
use a randomized policy that at the beginning of each timeslot
selects decision ri with probability pi.

We then have to prove the converse, that is, if there exists a
policy that stabilizes the system for a mean arrival rate vector
a, then a ∈ Λc. To this end, assume that a policy π renders the
system stable for a mean arrival rate vector a. Thus, the system
can be described as a Markov chain and since it is strongly
stable it has a stationary distribution π(q). Let L denote the
set of users to be scheduled. Note that the scheduling decision

depends on the queues states, and this dependency is shown by
L(q). The mean service rate vector under π which stabilizes
the system can then be expressed as the following

rs =
∑
q∈ZN+

π(q)r(L(q)) =
∑
L

r(L)
∑

q:L(q)=L

π(q) > a,

(23)

where the operator > is component-wise.
By setting p(L) =

∑
q:L(q)=L

π(q) and noticing that the set of

all possible decisions is nothing but S (or equivalently,R∪R̄),
the mean service rate can be re-written as

rs =
∑
L
p(L)r(L) =

|S|∑
j=1

pjrj , (24)

in which rj is used to denote a point in R∪ R̄.
Using the above expression, we can state that rs is in the
convex hull of R ∪ R̄. But, since R̄ is in the convex hull of
R represented by Λc (see Lemma 2), we have rs ∈ Λc and
then a ∈ Λc.

APPENDIX D
PROOF OF PROPOSITION 1

We show that policy ∆∗ stabilizes the system for all a ∈ Λc
by proving that the corresponding Markov chain is positive
recurrent. For this purpose, we use Foster’s theorem. Define
the quadratic Lyapunov function Ly(q) = 1

2q·q, and consider
the drift of this function under policy ∆∗ as Dr(∆∗)(q). Thus,
we have

Dr(∆∗)(q)

= E
[
Ly
(
q(∆∗)(t+ 1)

)
− Ly

(
q(∆∗)(t)

)
| q(∆∗)(t) = q

]
≤ N

2
a2
max +

N

2
b2max + q · a− E[q ·B(∆∗)(t) | q] (25)

where the last inequality holds since we have E[A(t)·A(t)] ≤
Na2

max, E[B(∆∗)(t) ·B(∆∗)(t)] ≤ Nb2max and Dr(∆∗)(q) ≤
Dr(∆∗)(q) + E[A(t) ·B(∆∗)(t)].
Since a is in Λc, there exists an ε > 0 such that the relation
E[B

(∆)
k (t)] ≥ ak + ε holds for all k (with k = 1, ..., N ),

where ∆ is a randomized policy that stabilizes the system. In
addition, for every policy different from ∆∗, and consequently
for ∆, we can write E[q ·B(∆∗)(t) | q] ≥ E[q ·B(∆)(t) | q]
which results from the definition of ∆∗. Thus, we get

Dr(∆∗)(q) ≤ N

2
(a2
max + b2max)− ε

N∑
k=1

qk, (26)

which implies that the Markov chain is positive recurrent, since
the drift is negative in all except finite number of states [13].
Therefore, ∆∗ stabilizes the system for all a ∈ Λc. Hence the
statement follows.

APPENDIX E
COMPUTATIONAL COMPLEXITY REDUCTION

We start by analyzing the complexity of the policy ∆∗ (i.e.
max-weight policy). Because what we are looking for (using
∆∗) is the maximum, thus it takes O(2N ) after computing all
values r(‖s‖1) s · q(t) to find the maximum value (resp. the



corresponding argument). Note that for two fixed vectors we
can compute this product in time O(N). Thus we would have
O(N2N ) ignoring computing r(‖s‖1) (can be done offline).
We can notice that for large N this algorithm is of high
computational complexity (CC).

This analysis corresponds to the classical implementation of
the max-weight algorithm. However, in our case the implemen-
tation of this algorithm does not require all this complexity.
This is due to the fact that all the active users have the same
average transmission rate r. This structural property of ∆∗

allows us to propose an equivalent reduced CC implementation
of ∆∗, given by the following:

Algorithm 1
1: Initialize L = 0.
2: Sort the queues in a descending order.
3: for l = 1 : 1 : N do
4: Consider suml = sum of the first l queues.
5: if rl suml > rL sumL then
6: put L = l
7: end if
8: end for
9: Schedule pairs corresponding to the first L queues.

The proposed algorithm depends essentially on two steps,
the "sorting algorithm" and the "for loop" which need, re-
spectively, O(N logN) and O(N(N+1)

2 ) = O(N2). Therefore,
the computational complexity of the proposed algorithm is
O(N2 +N logN) which is very small compared to O(N2N )
especially for large N .

APPENDIX F
PROOF OF THEOREM 2

We start by proving the following result (related to Lemma
3) which will help us in the proof of Theorem 2.

Lemma 4. Each point in SL can be written as L
L−n× some

point in the convex hull of SL−n, for 1 ≤ n < L.

Proof. From Lemma 3, a point in SL can be written as si,L =
L
L−1

∑
i1
δi1,L−1si1,L−1. Also, the point si1,L−1 (∈ SL−1) can

be expressed in function of some specific points in SL−2 as
si1,L−1 = L−1

L−2

∑
i2
δi2,L−1si2,L−2. Following this reasoning

until index L− n, we get

si,L =
L

L− 1

∑
i1

δi1,L−1
L− 1

L− 2

∑
i2

δi2,L−2...

...
L− n+ 1

L− n
∑
in

δin,L−nsin,L−n

=
L

L− n
∑
i

δi,L−nsi,L−n, (27)

in which δi,L−n is function of δi1,L−1...δin,L−n, and∑
i δi,L−n = 1 since

∑
ij
δij ,L−j = 1 for j = 1, ..., n.

From (27) and the fact that the point
∑
i

δi,L−nsi,L−n is in the

convex hull of SL−n, the desired result holds.

Using the above lemma, a point in SL can be writ-
ten in function of some point in the convex hull of S1

as L
1

∑
i δi,1si,1. Thus, a point in GL can be expressed

using some specific point in the convex hull of G1 as
L
1 rL

∑
i δi,1si,1. On the other hand, a point on the same line

from the origin of point L
1 rL

∑
i δi,1si,1 and in the convex

hull of J1 can be expressed as rzf
∑
i δi,1si,1. If LrL > rzf, we

can notice that point L1 rL
∑
i δi,1si,1 is outside Λzf. Therefore,

under this condition, we have that a part of the stability region
of IA surpasses the stability region of TDMA-ZF. On the other
side, the condition LrL < rzf ensure that the stability region
of IA is entirely inside Λzf. This completes the proof.

APPENDIX G
CASE OF MULTIPLE MODULATIONS

Consider the case where we use D modulations, each of
which corresponds to a rate Rj . These modulations are asso-
ciated to D SINR targets represented by τn, for n = 1, ..., D.
Without loss of generality, we can assume that τ1 < τ2 <
... < τD which implies that R1 < R2 < .... < RD. Hence, for
L scheduled users the average transmission rate per scheduled
(active) user can be written as

φL = (1− Lθ)RDP {γmk ≥ τD | L}

+ (1− Lθ)
D−1∑
j=1

RjP {τj ≤ γmk ≤ τj+1 | L}

= (1− Lθ)R1P {γmk ≥ τ1 | L}

+ (1− Lθ)
D−1∑
j=1

(Rj+1 −Rj)P {γmk ≥ τj+1 | L} ,

(28)

where the last equality holds since P {τj ≤ γmk ≤ τj+1} =
P {γmk ≥ τj} − P {γmk ≥ τj+1}.

To analyze stability for this case, we consider the total
average rate which corresponds to multiply (28) by L. The
only difference with the one-modulation case is that we
have, instead of one optimal number of pairs, D optimal
number of pairs due to D success probabilities. Every op-
timal value maximizes a concave function represented by
L(1−Lθ)P {γmk ≥ τj | L} (with j = 1, ..., D), for which the
optimal value of L has already been derived earlier. Let Lm1

denote the maximum among the D optimal numbers. Since for
all L > Lm1 the total average rate is a decreasing function,
we can characterize the stability region for this case using the
following proposition

Proposition 3. The stability region for the considered system
using multiple modulations is given by

Λm = CH{E1, E2, ..., ELm1
} (29)

where EL = {φLs,∀s ∈ SL}.

The proof of this proposition is essentially the same as the
proof of Theorem 1; thus, we omitted it for brevity. Notice
that the max-weight policy described earlier can be adopted
to achieve Λm. Hence, we can use Algorithm 1 (replace rL
with φL) to reduce the computational complexity of this policy.
Finally, a comparison with TDMA-ZF can be done in a similar
way as for the case with one modulation.
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